

Website: **www.previouspapers.co.za** Email: info@ previouspapers.co.za CELL: 073 770 3028

PAST EXAM PAPERS & MEMOS FOR ENGINEERING STUDIES N1-N6

THANK YOU FOR DOWNLOADING THE PAST EXAM PAPER, WE HOPE IT WILL BE OF HELP TO YOU. AT THE MOMENT WE **DO NOT HAVE MEMO FOR THE PAPER** BUT KEEP CHECKING OUT WEBSITE AND ONCE AVAILABLE WE WILL ADD IT FOR YOU.

ARE YOU IN NEED OF MORE PAPERS

You might be in need of **more question papers** and answers (memos) as you prepare for your final exams. We have a FULL SINGLE DOWNLOAD in pdf of papers between **2014-2019**. ALL THE PAPERS HAVE ANSWERS (MEMOS). We sell these at a **very discounted price** of **R299.00** per subject. Visit our website <u>https://previouspapers.co.za/shop/</u> to purchase a full download. Once you purchase, you get instant download and access. The online payment is also safe and we use <u>payfast</u> as it is used by all the banks in South Africa.

PRICE OF THE PAPERS AT A BIG DISCOUNT

Previous papers are very important in ensuring you pass your final exams. The **actual value** of the papers access is way more than **R1 000** but we are making you access these for a small fee of **R299.00**. The small fee helps to maintain the website.

BONUS PAPERS

We are also adding bonus papers for free which are papers between 2008-2011. These papers are very valuable as examiners usually repeat questions from old papers time and again. You get access to bonus papers after purchasing your paper.

MORE FREE PAPERS

<u>Click here</u> to access more **FREE PAPERS**.

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE

LOGIC SYSTEMS N3

(8080273)

9 April 2020 (X-paper) 09:00–12:00

Calculators may not be used.

This question paper consists of 9 pages.

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE LOGIC SYSTEMS N3 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer all the questions.
- 2. Read all the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. All sketches and diagrams must be large, clear and neat.
- 5. Start each question on a new page.
- 6. Keep questions and subsections of questions together.
- 7. Answer questions with a black or blue pen and make all drawings with a pencil.
- 8. Show all calculations.
- 9. Calculations and calculated answers must have THREE fractional radix spaces, for example $10,101_2$.
- 10. Write neatly and legibly.

QUESTION 1: NUMBER SYSTEMS

Convert each of the following numbers to its binary equivalent and complete the calculations in the binary number system. Show all conversions.

	Convert the final answer to the decimal system.	(5) [20]
1.4	$112,75_{10} \div 5,4_8$	
	Use the one's complement method and convert the final answer to the octal system.	(5)
1.3	$B,C6_{16} - 4,5_8$	
	Convert the final answer to the hexadecimal system.	(5)
1.2	36,25 ₁₀ × 3,4 ₈	
	Convert the final answer to the octal system.	(5)
1.1	$EF,F_{16} + 37,3_8 + 11101101,1011_2$	

QUESTION 2: CODES, DATA AND DATA COMMUNICATION, ENCODERS, DECODERS AND ARITHMETIC ELEMENTS

2.1	Sketch the block diagram and complete the truth table for a full adder that uses two half adders and an OR gate.	(6)
2.2	Encode the following into the ASCII code:	
	(F6\$) 👞	(5)
2.3	The state of a 12-bit coder is 100101010111.	
	What is the content if it represents a:	
	2.3.1 Gray code	
	2.3.2 Three-decimal 2421 code (2×3)	(6)
2.4	Differentiate between the terms <i>word</i> and <i>word length</i> as used in logic systems.	(1)
2.5	Define the term <i>alphanumeric code</i> and give ONE example of an alphanumeric code.	(2) [20]

QUESTION 3: LOGIC GATES, INTEGRATED CIRCUITS AND LOGIC FAMILIES

- 3.1 Indicate whether the following statements are TRUE or FALSE by writing only 'True' or 'False' next to the question number (3.1.1–3.1.5) in the ANSWER BOOK.
 - 3.1.1 Power is connected to pins 7 and 14 of a 7408 quad two-input AND gate IC to allow voltage for all four AND gates on the IC.
 - 3.1.2 A NOR gate output is low if any of its inputs is low.
 - 3.1.3 An OR array is programmed by blowing fuses to eliminate selected variables from the output functions.
 - 3.1.4 The output of an AND gate with three inputs, A, B and C, is high when A = 1, B = 1, C = 1.
 - 3.1.5 A truth table illustrates how the input level of a gate responds to all the possible output level combinations.

 (5×1) (5)

3.2 The following IEC symbol is used in digital circuits to represent a gate:

321	Which gate does the IEC symbol represent?	(1)
J.Z. I	which gate does the inclusion represent:	(1)

- 3.2.2 Draw and fully label the switch circuit for the gate named in QUESTION 3.2.1. (2)
- 3.2.3 Construct a truth table for the gate named in QUESTION 3.2.1. (2)

3.3 Given below is a circuit diagram that consists of an AND gate, a NAND gate, two NOR gates and an XOR gate.

Copy and complete the following truth table for the circuit:

А	В	С	а	b	С	d	Z
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

3.4 Make a neat labelled sketch of the circuit diagram of the following Boolean expression without changing or simplifying the expression:

$$Z = \overline{A\overline{B}C + \overline{A\overline{B}} + AC}$$
 (5)

(5) [**20**]

(5)

QUESTION 4: MEMORY ELEMENTS AND MEMORIES

- 4.1 Various options are given as possible answers to the following questions. Choose the answer and write only the letter (A–D) next to the question number (4.1.1–4.1.5) in the ANSWER BOOK.
 - 4.1.1 Which ONE of the following statements best describes volatile memory?
 - A Memory that retains stored information when electrical power is removed
 - B Magnetic memory
 - C Nonmagnetic memory
 - D Memory that loses stored information when electrical power is removed
 - 4.1.2 How can UV-erasable PROMs be recognised?
 - A The part number always starts with a U as in U12.
 - B There is a small window on the chip.
 - C It has a small violet dot next to the #1 pin.
 - D It is not readily identifiable as it must always be kept under a small cover.
 - 4.1.3 An 8-bit address code can select ...
 - A locations in memory.
 - B 8 locations in memory 256.
 - C 65,536 locations in memory.
 - D 131,072 locations in memory.
 - 4.1.4 Information stored in an EEPROM ...
 - A can be modified by performing a memory-write operation.
 - B is stored by the manufacturer and cannot be changed.
 - C is lost if power is interrupted.
 - D can be erased by applying high voltage to each storage location.
 - 4.1.5 The number of 16k × 4 memories needed to construct a 128k × 8 memory:
 - A 4
 - B 16
 - C 12
 - D 8

4.3

4.4

4.5

4.2.1	Draw the truth table for the D-type master-slave flip-flop.	(2)		
4.2.2	Why is the D-type master-slave flip-flop known as a delay flip-flop?	(2)		
4.2.3	What is the function of the NOT gate between the master and slave on the D-type master-slave flip-flop?	(2)		
Write the	abbreviation USB in full.	(2)		
Name THREE types of secondary memories.				
Give FOL	IR advantages of semiconductor memory.	(4) [20]		

QUESTION 5: SHIFT REGISTERS AND COUNTERS

- 5.1 Various options are given as possible answers to the following questions. Choose the answer and write only the letter (A–D) next to the question number (5.1.1–5.1.5) in the ANSWER BOOK.
 - 5.1.1 The MOD-10 counter is also referred to as a ... counter.
 - A ripple
 - B BCD
 - C decade
 - D circuit
 - 5.1.2 A sequential circuit design is used to ...
 - A decode an end count.
 - B count in a random order.
 - C count down.
 - D count up.

- 5.1.3 Which segments (by letter) of a seven-segment display must be active to display a digit 6?
 - A b, c, d, e, f and g
 - B a, b, c, d and f
 - C a, c, d, e, f and g
 - D b, c, d, e and f
- 5.1.4 The minimum number of flip-flops that can be used to construct a modulus-5 counter:
 - A 10
 - B 8
 - C 5
 - D 3
- 5.1.5 Many parallel counters use ... presetting whereby the counter is preset on the active transition of the same clock signal used for counting.
 - A feedback
 - B ripple
 - C synchronous
 - D asynchronous

 (5×1) (5)

- 5.2 Indicate whether the following statements are TRUE or FALSE by writing only 'True' or 'False' next to the question number (5.2.1–5.2.5) in the ANSWER BOOK.
 - 5.2.1 A ripple counter is an asynchronous counter.
 - 5.2.2 The MOD number of a Johnson counter will always be equal to half the number of flip-flops in the counter.
 - 5.2.3 Bidirectional shift registers can shift data either right or left.
 - 5.2.4 In a synchronous counter each state is clocked by the same pulse.
 - 5.2.5 Basic counters can be cascaded in parallel to increase the number of data bits that the counter can handle.
 - (5 × 1) (5)

5.3 Name TWO types of circulating registers.

(2)

5.4 Study the diagram below and answer the questions.

TOTAL: 100

[20]