Website: www.previouspapers.co.za Email: info@ previouspapers.co.za CELL: 073 770 3028 # PAST EXAM PAPERS & MEMOS FOR ENGINEERING STUDIES N1-N6 THANK YOU FOR DOWNLOADING THE PAST EXAM PAPER, WE HOPE IT WILL BE OF HELP TO YOU. AT THE MOMENT WE **DO NOT HAVE MEMO FOR THE PAPER** BUT KEEP CHECKING OUT WEBSITE AND ONCE AVAILABLE WE WILL ADD IT FOR YOU. ### ARE YOU IN NEED OF MORE PAPERS You might be in need of **more question papers** and answers (memos) as you prepare for your final exams. We have a FULL SINGLE DOWNLOAD in pdf of papers between **2014-2019**. ALL THE PAPERS HAVE ANSWERS (MEMOS). We sell these at a **very discounted price** of **R299.00** per subject. Visit our website https://previouspapers.co.za/shop/ to purchase a full download. Once you purchase, you get instant download and access. The online payment is also safe and we use payfast as it is used by all the banks in South Africa. ### PRICE OF THE PAPERS AT A BIG DISCOUNT Previous papers are very important in ensuring you pass your final exams. The **actual value** of the papers access is way more than R1 000 but we are making you access these for a small fee of R299.00. The small fee helps to maintain the website. ### **BONUS PAPERS** We are also adding bonus papers for free which are papers between 2008-2011. These papers are very valuable as examiners usually repeat questions from old papers time and again. You get access to bonus papers after purchasing your paper. ### **MORE FREE PAPERS** Click here to access more FREE PAPERS. Website: www.previouspapers.co.za Email: info@previouspapers.co.za ## NATIONAL CERTIFICATE MOTOR ELECTRICAL THEORY N2 (11040612) 9 April 2020 (X-paper) 09:00-12:00 This question paper consists of 5 pages. 213Q1A2009 (11040612) -2- ### DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA NATIONAL CERTIFICATE MOTOR ELECTRICAL THEORY N2 TIME: 3 HOURS MARKS: 100 ### INSTRUCTIONS AND INFORMATION - 1. Answer all the questions. - 2. Read all the questions carefully. - 3. Number the answers according to the numbering system used in this question paper. - 4. Sketches must be neat, large and fully labelled. - 5. Use only a black or blue pen. - 6. Write neatly and legibly. (11040612) -3- ### **QUESTION 1** 1.1 A motor vehicle has two 24 V batteries connected in series. The combined EMF of both batteries is 48 V. A load drawing 8 amperes is connected to the supply. The internal resistance of the supply is $0.24~\Omega$. Calculate the following: | | 1.1.1 | The EMF per battery | (2) | |----|---|--|-----| | | 1.1.2 | The potential difference of the supply at the load | (2) | | | 1.1.3 | The internal resistance per battery | (2) | | | 1.1.4 | The internal resistance per cell | (2) | | .2 | Make a neat sketch of the circuit mentioned in QUESTION 1.1 and indicate on the sketch all the given and calculated values. | | | | .3 | An auto-electrician is responsible for repairing and maintaining the electrical systems in a vehicle. | | | | | Name FC | OUR electrical systems. | (4) | #### **QUESTION 2** 1 1 - 2.1 Make a fully labelled sketch and explain how self-induction occurs in a circuit. (7) - 2.2 A single conductor of a generator armature is 150 mm long. The conductor moves at right angles through a magnetic field with a flux density of 0,25 tesla at a speed of 70 kilometres per hour. Calculate the EMF induced in the conductor. (4) [16] - 2.3 State THREE practical applications of electromagnetic induction. (3) - 2.4 State FOUR advantages of electromagnetic induction. (4) **QUESTION 3** - 3.1 Fully describe the construction of a solenoid of a pre-engaged-type starter motor. (3) - 3.2 State TWO necessary characteristics of the brush lead of a starter motor. (2) - 3.3 State TWO possible causes of burnt windings in a starter motor armature. (2) (11040612) -4- | 3.4 | State FOUR components of a starter motor armature. | | | | | |--------|---|----------------------|--|-------------------------------|--| | 3.5 | Fully describe the construction of the field coils of a starter motor. | | | | | | 3.6 | Explain the procedure to test the armature for the following: | | | | | | | 3.6.1 | Earth fault | * | | | | | 3.6.2 | Open circuit in win | ndings | | | | | 3.6.3 | Short circuit in win | | (3 × 2) (6) [21] | | | QUESTI | ON 4 | | | | | | 4.1 | Explain the relation between the <i>points gap</i> , the <i>dwell angle</i> and the <i>ignition timing</i> of a vehicle that uses the conventional ignition system. | | | | | | 4.2 | State TWO advantages of a <i>magneto</i> system when compared to the conventional ignition system. | | | to the (2) | | | 4.3 | Make a neat, labelled sketch of a stroboscopic timing light. | | | | | | 4.4 | Explain how the breaker point gap of the ignition system is corrected by using a dwell meter. | | | | | | 4.5 | State THREE current uses of magnetos. | | | (3) | | | 4.6 | State FOUR specifications that are required before setting the ignition timing with timing light. | | | timing
(4)
[20] | | | QUESTI | ON 5 | | | | | | 5.1 | | | diagram of a full-wave battery charger. (| Clearly (8) | | | 5.2 | Explain th sulphated | | t a lead-acid battery to determine if the ce | lls are
(4)
[12] | | (11040612) -5- ### **QUESTION 6** | | TOTAL: | 100 | |-----|--|--------------------| | 6.5 | Make a neat, labelled sketch showing the forward and reverse characteristics of a silicon diode. | (4)
[13] | | 6.4 | Fully explain the process of doping semiconductor materials. | (4) | | 6.3 | Give ONE reason for doping semiconductor materials. | (2) | | 6.2 | Name TWO semiconductor materials. | (2) | | 6.1 | Give ONE reason for a diode short-circuit. | (1) |